Development and validation of a fat mass equation for anthropometry using triceps skinfold and body weight. Use of deuterium isotope dilution as a standard

Main Article Content

Gabriel Tarducci
Anabel Pallaro
Amalia Paganini
Sofía Gárgano
Mariel Vidueiros
Guillermo Morea

Abstract

Assessing fat mass in children is of great interest for monitoring growth and development, as well as for decision-making in health and active life intervention programs. A total of 80 girls and 72 boys aged 6 to 9 years-old were evaluated using the all-possible-regressions method to derive the prediction model. The deuterium isotope dilution method was used as a standard for validation. A mathematical model was developed to predict fat mass FM (kg) = -4.7343 + 0.3148 (Weight) + 0.3029 (Triceps skinfold). Validation results: r = 0.7826; r2 = 0.6125; b = 0.7826 and intercept value = 1.5160. The concordance correlation coefficient (ccc) of the equation obtained was 0.7824, indicating high reproducibility, as it does not significantly differ from 1. A validated equation that is easy to apply in both laboratory and field conditions is now available.

Downloads

Download data is not yet available.

Article Details

How to Cite
Tarducci, G., Pallaro, A., Paganini, A., Gárgano, S., Vidueiros, M., & Morea, G. (2024). Development and validation of a fat mass equation for anthropometry using triceps skinfold and body weight. Use of deuterium isotope dilution as a standard. Educación Física Y Ciencia, 26(4), e317. https://doi.org/10.24215/23142561e317
Section
Articles

References

Altman, D. G. & Bland, J. M. (1994). Diagnostic tests. 1: Sensitivity and specificity. BMJ, 308(6943), 1552. https://doi.org/10.1136/bmj.308.6943.1552 DOI: https://doi.org/10.1136/bmj.308.6943.1552

Bland, J. M. & Altman, D. G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. Lancet, 1(8476), 307-310. DOI: https://doi.org/10.1016/S0140-6736(86)90837-8

Bland, J. M. & Altman, D. G. (1994). Some examples of regression towards the mean. BMJ, 309(6957), 780. https://doi.org/10.1136/bmj.309.6957.780 DOI: https://doi.org/10.1136/bmj.309.6957.780

Cataldi, D., Bennett, J. P., Quon, B. K., Liu, Y. E., Heymsfield, S. B., Kelly, T. & Shepherd, J. A. (2023). Agreement and Precision of Deuterium Dilution for Total Body Water and Multicompartment Body. JN. The Journal of Nutrition, 153(8), 2540. https://doi.org/10.1016/j.tjnut.2023.04.006 DOI: https://doi.org/10.1016/j.tjnut.2023.04.006

Eckhardt, C. L., Adair, L. S., Caballero, B., Avila, J., Kon, I. Y., Wang, J. y Popkin B. M. (2003). Estimating body fat from anthropometry and isotopic dilution: a four-country comparison. Obes Res, 11(12), 1553-62. https://doi.org/10.1038/oby.2003.207 DOI: https://doi.org/10.1038/oby.2003.207

Fabiansen, C., Yaméogo, C. W., Devi, S., Friis, H., Kurpad, A., Wells, J. C. (2017). Deuterium dilution technique for body composition assessment: resolving methodological issues in children with moderate acute malnutrition. Isotopes Environ Health Stud, 53(4), 344-355. https://doi.org/10.1080/10256016.2017.1295043 DOI: https://doi.org/10.1080/10256016.2017.1295043

Hernández Sampieri, R., Fernádez Collado, C. & Baptista Lucio, P. (2006). Metodología de la investigación (4th ed.). México: McGraw Hhill. Recuperado de https://es.scribd.com/document/721072248/Sampieri-H-Metodologi-a-de-La-Investigacio-n-4ta-EDICIO-N

Heymsfield, S. B. & Lichtman, S. (1990). New approaches to body composition research: a reexamination of two-compartment model assumptions. Infusionstherapie (Basel, Switzerland), 17(3), 4-8. https://doi.org/10.1159/000222544 DOI: https://doi.org/10.1159/000222544

Kanellakis, S., Skoufas, E., Khudokonenko, V., Apostolidou, E., Gerakiti, L., Andrioti, M. C., Bountouvi, E. & Manios, Y. (2017). Development and validation of two equations based on anthropometry, estimating body fat for the Greek adult population. Obesity (Silver Spring, Md.), 25(2), 408-416. https://doi.org/10.1002/oby.21736 DOI: https://doi.org/10.1002/oby.21736

Kawakami, R., Miyachi, M., Tanisawa, K., Ito, T., Usui, C., Midorikawa, T., Torii, S., Ishii, K., Suzuki, K., Sakamoto, S., Higuchi, M., Muraoka, I. & Oka, K. (2021). Development and validation of a simple anthropometric equation to predict appendicular skeletal muscle mass. Clinical nutrition (Edinburgh, Scotland), 40(11), 5523-5530. https://doi.org/10.1016/j.clnu.2021.09.032 DOI: https://doi.org/10.1016/j.clnu.2021.09.032

Kuriyan, R. (2018). Body composition techniques. Indian J Med Res, 148, 648-658. https://doi.org/10.4103/ijmr.IJMR_1777_18 DOI: https://doi.org/10.4103/ijmr.IJMR_1777_18

Kurtner, M. H., Nachtsheim, C. J. & Neter, J. (2004). Applied linear statistical models (4th ed.). Philadelphia: McGraw Hill.

Lee, D. H., Keum, N., Hu, F., Orav, J. 2, Rimm, E., Sun, Q., Willett, W., Giovannucci, E. (2017). Development and validation of anthropometric prediction equations for lean body mass, fat mass and percent fat in adults using the National Health and Nutrition Examination Survey (NHANES) 1999-2006. British Journal of Nutrition, 118(10), 858-866. https://doi.org/10.1017/S0007114517002665 DOI: https://doi.org/10.1017/S0007114517002665

Lin, L. I. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45(1), 255-68. DOI: https://doi.org/10.2307/2532051

Lucena Filho, A., Lima, R. A., Soares, F. C., Bezerra, J. & de Barros, M. V. G. (2022). The Role of Adiposity in the Association Between Physical Activity and Blood Pressure in Children. Research quarterly for exercise and sport, 93(3), 578-584. https://doi.org/10.1080/02701367.2021.1878089 DOI: https://doi.org/10.1080/02701367.2021.1878089

Monyeki, M. A., Sedumedi, C. M., Reilly, J. J., Janssen, X., Kruger, H. S., Kruger, R., Loechl, C. U. (2022). Birth Weight and Body Composition as Determined by Isotopic Dilution with Deuterium Oxide in 6- to 8-Year-Old South African Children. Children, 9, 1597. https://doi.org/10.3390/children9101597 DOI: https://doi.org/10.3390/children9101597

NCSS, LLC. (2023). NCSS statistical software. Recuperado de https://www.ncss.com

Ndagire, C. T., Muyonga, J. H., Odur, B. & Nakimbugwe, D. (2018). Prediction equations for body composition of children and adolescents aged 8-19 years in Uganda using deuterium dilution as the reference technique. Clin Nutr ESPEN, 28, 103-109. https://doi.org/10.1016/j.clnesp.2018.09.004 DOI: https://doi.org/10.1016/j.clnesp.2018.09.004

Norton, K. I. (2018). Standards for anthropometry assessment. En K. Norton y R. Eston, Kinanthropometry and exercise physiology (pp.68-137). Recuperado de https://scholar.google.com/scholar?hl=es&as_sdt=0%2C5&q=anthropometry+measurement&oq=Anthropometry+#d=gs_qabs&t=1724944651447&u=%23p%3DnTuBNU8qN3oJ DOI: https://doi.org/10.4324/9781315385662-4

Plasqui, G., den Hoed, M., Bonomi, A. y Westerterp, K. R. (2009). Body composition in 10-13-year-old children: a comparison between air displacement plethysmography and deuterium dilution. International Journal of Pediatric Obesity, 4(4), 397-404. DOI: https://doi.org/10.3109/17477160902952472

Shapiro, S. S. y Wilk. M. B. (1965). An Analysis of Variance Test for Normality (Complete Samples). Biometrika, 52(3-4), 591-611. https://doi.org/10.2307/2333709 DOI: https://doi.org/10.1093/biomet/52.3-4.591